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Abstract

A two-energy equation model is proposed for analyzing conduction and convection within porous media in local
thermal non-equilibrium. Hsu’s closure model for the tortuosity effect has been extended to treat not only conduction
but also convection in porous media. The two energy equations for the individual phases are combined into a fourth-
order ordinary differential equation, so as to treat one-dimensional steady-state problems. Then, the exact solutions are
obtained for two fundamental cases, namely, one-dimensional steady conduction in a porous slab with internal heat
generation within a solid, and also thermally developing unidirectional flow through a semi-infinite medium. © 2001

Elsevier Science Ltd. All rights reserved.

1. Introduction

In a fluid-saturated porous medium, the thermal
diffusivity of the fluid phase may be much lower (or
higher) than that of the solid structure. In transient
heat conduction processes within such porous media,
the assumption of local thermal equilibrium must be
discarded, as pointed out by Kaviany [1], Hsu [2] and
many others. Also, there are a number of ‘“steady”
situations in which the heat transfer process cannot be
regarded as being in local thermal equilibrium. When
there is a significant heat generation occurring in any
one of two phases (either solid or fluid), the tempera-
tures in the two phases are no longer equal [1,3]. The
assumption of local thermal equilibrium cannot be used
when we analyze the entrance region of packed column
where a hot gas flows at a high speed. Numerous other
physical situations, where local thermal equilibrium
fails, can be found in Quintard [4] and Quintard and
Whitaker [5].

Hsu [2] proposed a simplified two-energy equation
model for transient heat conduction in porous media,
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and assessed the validity of the assumption of local
thermal equilibrium. He follows a treatment, which is
quite similar to that of Quintard and Whitaker [5], but
mathematically more concise. The major difference be-
tween his form and the classical (heuristic) form is the
appearance of additional coupling terms accounting for
thermal tortuosity, which are related to the temperature
gradient in the other phase. In this paper, we shall ex-
tend the closure model of Hsu [2], so as to treat not only
conduction but also convection in porous media. Having
established the macroscopic energy equations for both
phases, useful exact solutions are obtained for two
fundamental heat transfer processes associated with
porous media, namely, steady conduction in a porous
slab with internal heat generation within a solid, and
also, thermally developing flow through a semi-infinite
porous medium.

2. Volume-averaged energy equations and their closure
modeling

Following Cheng [6] and Nakayama [7], the two-
energy equation model proposed by Hsu [2] for the case
of pure conduction in saturated porous media can be
generalized to treat both conduction and convection in
saturated porous media:
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Nomenclature

ag specific interfacial area

G tortuosity parameter

hy interfacial convective heat transfer coefficient

Pe Peclet number based on +/k¢/ashy and
Darcian velocity

Pey  Peclet number based on the particle diameter
and Darcian velocity

X dimensionless coordinate X = x/+\/kc/ashs
€ porosity
a thermal conductivity ratio of solid to fluid

Subscripts and superscripts

f fluid
s solid
Special symbol

()" intrinsic volume-average

ag)f + (@) - v’

&

e

=V. [(6 + (1 = 0)G)keV(T) + ks - V(Dq

+ (ashy — kGV?) ((T}S - <T>f) + &Sy, (1)
(1-9p. 02— 9 (01— o4 (o - ORI
— (ashy — kGV?) ((T)S - <T>f) +(1-e)s., )

where (T)" and (T)* are the intrinsic volume-averaged
temperature of the fluid phase and that of the solid
phase, respectively. Moreover, ¢ is the porosity whereas
St and S; are the volumetric rates of heat generation for
the fluid and solid phases, respectively. These volumetric
heat generation rates and the material constants such as
thermal conductivities ks, densities p;; and heat ca-
pacities Cpr are all assumed constant. The interfacial
heat transfer coefficient 4y and thermal dispersion ten-
sor kg, may be determined either empirically [3] or nu-
merically [8-11]. Hsu [2] argues that the tortuosity
parameter G must depend only on the local interfacial
geometry and on the solid and fluid thermal properties,
such that the expression for G obtained under the
thermal equilibrium condition can be extended to the
thermal non-equilibrium regime:

G (kstg/kf)( — 1—) 2<1 —&)o )

In the foregoing expression, ¢ = ks/k; is the thermal
conductivity ratio of solid to fluid, whereas ky, is the
effective stagnant thermal conductivity of the saturated
porous medium, which can be determined experimen-
tally, or theoretically, using a structural model. As
pointed out by Hsu, the parameter G is always negative
such that the tortuosity effect is to reduce the effective
thermal conductivity of the saturated porous medium
from its upper limit ek; + (1 — ¢)k; based on the parallel
model. The effect of parameter G on the stagnant ther-
mal conductivity is discussed in detail in [2]. For the case
of forced convection, however, the macroscopic con-

ductivity due to thermal dispersion becomes much larger
than the stagnant thermal conductivity, and controls the
diffusion.

The two energy Eqgs. (1) and (2) with the expressions
for hy, kgs and kg, (given either empirically or theor-
etically), constitute a closed set of the two-energy
equation model for conduction and convection in fluid-
saturated porous media. Unlike some existing two-
equation models that contain a number of unknown
transfer coefficients, the present model is quite concise
such that it can readily be employed to investigate a
number of steady and unsteady transport processes in
porous media, numerically or analytically.

For sample calculations, we may use Wakao and
Kaguei’s empirical expressions for Ay and kg [3] and
Hsu’s analytical expression based on a three-dimen-
sional cube model for kg, [12]:

. 0.6
h%fdpzzﬂ.m;“ pf<:f>dp , (4a)
(/E(;:) PrCot ’k<fﬁ> )dp 7 (4b)

(1-2¢)"¢

(1 —a —8)]/3>(r—|— (1—¢)

where d, is the particle diameter. Eqs. (4a) and (4b)
suggest that both thermal dispersion and interfacial heat
transfer become significant as we increase the Reynolds
number.

(4¢)

3. One-dimensional steady problems

In order to elucidate the relevancy of the treatments
based on the present two-energy equation model, we
shall consider one-dimensional steady problems and
derive a fourth-order ordinary differential equation,
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which can easily be integrated to find the temperature
fields in both phases.

3.1. Governing equations for one-dimensional steady
problems

For the one-dimensional steady problems, Egs. (1)
and (2) can be combined to eliminate (T)°. After con-
siderable manipulation, we obtain the following fourth-
order O.D.E. for determining (T)":

ar) a(r) ke + ()
Far —ae /| — %"

X <a(1 — &+ 0G) d;i\Qf —d(<1XT>f)

kstg + (Ejis)
= (eSe+ (1 — e)SS)/anhsf kiu , (5

where the dimensionless quantities are given by

ke
X = 6.
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e (@) & o
e kf asfhsf ( )

and
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Once (T)" is known, (T)* can readily be determined from
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We shall now consider two fundamental cases in which
interesting analytical solutions exist.

3.2. Heat conduction with heat generation in the solid
phase

Let us consider steady heat conduction through a
porous slab saturated with a fluid, as shown in Fig. 1.
Heat generation takes place within the solid phase, such

Fig. 1. Porous slab with heat generation in the solid phase.

that S = 0 and S; = const # 0. For this case, Egs. (5)
and (7) reduce to

ain &) (1-e)s,

ﬁ dx+# B dxz asl‘hsf(kslg/kl‘)7 (8)
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where
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N s "
The boundary conditions are given by
X=0 U1y’ = d;g})f =0, (I1a)

= f <T>[ = <T>b — dyef- (1]b)

AV kf/asfhsf .

Hence, the solutions are given by
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The fluid and solid temperature distributions with
¢ =0.4 and H = 5+\/k¢/asshy are presented in Fig. 2 for
o = 40. The figure clearly shows that the heat generated
in the solid phase constantly transfers into the fluid
phase, such that the local thermal equilibrium assump-
tion may not be valid for the case of large o and small H.

3.3. Thermally developing unidirectional flow through a
semi-infinite porous medium

For this second fundamental case, a hot fluid enters
into a semi-infinite porous medium at the velocity |(#)|,
as shown in Fig. 3. The exhaust gas flow through a
catalytic converter may be modeled in this fashion as in
the study of diffusion-controlled catalytic reaction [13].

As the fluid goes downstream, the thermal equilib-
rium state will be attained asymptotically. Since there is
no internal heat generation, we have Sy = S; = 0. Hence,
Egs. (5) and (7) reduce to
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Fig. 2. Fluid and solid temperature distributions within a po-
rous slab ¢ = 0.4,0 = 40 and H = 5\/k¢/ash).
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Fig. 3. Hot fluid passing through a semi-infinite porous me-
dium.

s f ﬂ kstg + (I?diS)xx
<T>:<T>_a(1—s+(a—l)G)( ke
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2 Tttt (e-1)G = dx '
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where f is given by (6¢). The boundary conditions for
the case are given by

X=0. (D=1, (TV=T1, (16a)

=0. (16b)

The solutions are given by

(1) -1
(Th—T1)
{ kstg+(l_€dis>
=1+ “,'a(l—s-i-(a—l)G)/ Pe+vy —% xx
x (exp(—pX)—1), (17)
()=
(Th—T1)
kstg+<l_;dis>
=1+ ya(l—s+(a—1)G)/ Pe+vy — o
x (exp(—7X)—1)—exp(—7X), (18)

where —7y is the negative real root which can be uniquely
determined from the following cubic characteristic
equation

B(—v)’ - Pea(ls+aG)/ (W)

5 kstg+<l;dis>
(=) =(=n+ Pe/ — = (19)
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Fig. 4. Effect of particle Peclet number on y.
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Fig. 5. Fluid and solid temperature distributions in a semi-in-
finite medium (¢ = 0.4,0 = 40, Py = 1 and Pey = 100).

Fig. 4 shows the effect of the particle Peclet number
Pey on the root y for the case of Py =1,6 =0.4 and
o = 40. Note that the Peclet number Pe is related to the
particle Peclet number via (4a)

Pe = Ped 05° (203)
(6(1 ) (2 n 1.1Pr;4/‘5peg»6)>
where
PeCot <ﬁ> dp
Pey = — (20b)
f

The temperature distributions for both phases for the
case of ¢ =0.4, 0 =40,Pr¢ =1 and Peq = 100 are plot-
ted in Fig. 5. The fluid is cooled down to the thermal
equilibrium (asymptotic) temperature, as it flows
downstream, releasing its heat to the solid phase.

4. Conclusions

A two-energy equation model was established to
analyze both conduction and convection phenomena in
fluid-saturated porous media. It has been shown that,
for one-dimensional steady problems, the two energy
equations can be combined to form a fourth-order
O.D.E. with respect to the intrinsically averaged fluid
temperature. The resulting O.D.E. were solved with
appropriate boundary conditions to find exact solutions
for two fundamental problems, namely, one-dimen-
sional steady conduction in a porous slab with internal
heat generation within a solid, and also, thermally de-
veloping unidirectional flow through a semi-infinite
medium. Experimental validation of the present two-
energy equation model may not be an easy task since
careful temperature measurements for the individual
phases are required.
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